Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sci Total Environ ; 887: 163781, 2023 Aug 20.
Article in English | MEDLINE | ID: covidwho-2309588

ABSTRACT

During the pandemic of COVID-19, the amounts of quaternary ammonium compounds (QACs) used to inactivate the virus in public facilities, hospitals and households increased, which raised concerns about the evolution and transmission of antimicrobial resistance (AMR). Although QACs may play an important role in the propagation of antibiotic resistance gene (ARGs), the potential contribution and mechanism remains unclear. Here, the results showed that benzyl dodecyl dimethyl ammonium chloride (DDBAC) and didecyl dimethyl ammonium chloride (DDAC) significantly promoted plasmid RP4-mediated ARGs transfer within and across genera at environmental relevant concentrations (0.0004-0.4 mg/L). Low concentrations of QACs did not contribute to the permeability of the cell plasma membrane, but significantly increased the permeability of the cell outer membrane due to the decrease in content of lipopolysaccharides. QACs altered the composition and content of extracellular polymeric substances (EPS) and were positively correlated with the conjugation frequency. Furthermore, transcriptional expression levels of genes encode for mating pairing formation (trbB), DNA replication and translocation (trfA), and global regulators (korA, korB, trbA) are regulated by QACs. And we demonstrate for the first time that QACs decreased the concentration of extracellular AI-2 signals, which was verified to be involved in regulating conjugative transfer genes (trbB, trfA). Collectively, our findings underscore the risk of increased disinfectant concentrations of QACs on the ARGs transfer and provide new mechanisms of plasmid conjugation.


Subject(s)
COVID-19 , Quaternary Ammonium Compounds , Humans , Ammonium Chloride , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Plasmids
2.
J Hazard Mater ; 453: 131428, 2023 07 05.
Article in English | MEDLINE | ID: covidwho-2306613

ABSTRACT

The propagation of antimicrobial resistance (AMR) is constantly paralyzing our healthcare systems. In addition to the pressure of antibiotic selection, the roles of non-antibiotic compounds in disseminating antibiotic resistance genes (ARGs) are a matter of great concerns. This study aimed to explore the impact of different disinfectants on the horizontal transfer of ARGs and their underlying mechanisms. First, the effects of different kinds of disinfectants on the conjugative transfer of RP4-7 plasmid were evaluated. Results showed that quaternary ammonium salt, organic halogen, alcohol and guanidine disinfectants significantly facilitated the conjugative transfer. Conversely, heavy-metals, peroxides and phenols otherwise displayed an inhibitory effect. Furthermore, we deciphered the mechanism by which guanidine disinfectants promoted conjugation, which includes increased cell membrane permeability, over-production of ROS, enhanced SOS response, and altered expression of conjugative transfer-related genes. More critically, we also revealed that guanidine disinfectants promoted bacterial energy metabolism by enhancing the activity of electron transport chain (ETC) and proton force motive (PMF), thus promoting ATP synthesis and flagellum motility. Overall, our findings reveal the promotive effects of disinfectants on the transmission of ARGs and highlight the potential risks caused by the massive use of guanidine disinfectants, especially during the COVID-19 pandemic.


Subject(s)
COVID-19 , Disinfectants , Humans , Anti-Bacterial Agents/pharmacology , Disinfectants/pharmacology , Genes, Bacterial , Pandemics , Drug Resistance, Microbial/genetics , Guanidines , Gene Transfer, Horizontal , Plasmids/genetics
3.
Sci Total Environ ; 871: 162035, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2236822

ABSTRACT

Aerosols are an important route for the transmission of antibiotic resistance genes (ARGs). Since the 2019 (COVID-19) pandemic, the large-scale use of disinfectants has effectively prevented the spread of environmental microorganisms, but studies regarding the antibiotic resistance of airborne bacteria remain limited. This study focused on four functional urban areas (commercial areas, educational areas, residential areas and wastewater treatment plant) to study the variations in ARG abundances, bacterial community structures and risks to human health during the COVID-19 pandemic in aerosol. The results indicated the abundance of ARGs during the COVID-19 period were up to approximately 13-fold greater than before the COVID-19 period. Large-scale disinfection resulted in a decrease in total bacterial abundance. However, chlorine-resistant bacteria tended to be survived. Among the four functional areas, the diversity and abundance of aerosol bacteria were highest in commercial aera. Antibiotic susceptibility assays suggested elevated resistance of isolated bacteria to several tested antibiotics due to disinfection exposure. The potential exposure risks of ARGs to human health were 2 times higher than before the COVID-19 pandemic, and respiratory intake was the main exposure route. The results highlighted the elevated antibiotic resistance of bacteria in aerosols that were exposed to disinfectants after the COVID-19 pandemic. This study provides theoretical guidance for the rational use of disinfectants and control of antimicrobial resistance.


Subject(s)
COVID-19 , Disinfectants , Humans , Pandemics , Genes, Bacterial , Respiratory Aerosols and Droplets , Drug Resistance, Microbial/genetics , Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Disinfectants/pharmacology
4.
Sci Total Environ ; 867: 161527, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2183117

ABSTRACT

Disinfectants are routinely used in human environments to control and prevent the transmission of microbial disease, and this is particularly true during the current COVID-19 crisis. However, it remains unclear whether the increased disinfectant loadings to wastewater treatment plants facilitate the dissemination of antibiotic resistance genes (ARGs) in sewage sludge microbiomes. Here, we investigated the impacts of benzalkonium chlorides (BACs), widely used disinfectants, on ARGs profiles and microbial community structures in sewage sludge by using high-throughput quantitative PCR and Illumina sequencing. A total of 147 unique ARGs and 39 mobile genetic elements (MGEs) were detected in all sewage sludge samples. Our results show that exposure to BACs disinfectants at environmentally relevant concentrations significantly promotes both the diversity and absolute abundance of ARGs in sludge microbiomes, indicating the co-selection of ARGs by BACs disinfectants. The enrichment of ARGs abundance varied from 2.15-fold to 3.63-fold compared to controls. In addition, BACs exposure significantly alters bacterial and protistan communities, resulting in dysbiosis of the sludge microbiota. The Mantel test and Procrustes analysis confirm that bacterial communities are significantly correlated with ARGs profiles under BACs treatments. The structural equation model explains 83.8 % of the total ARGs variation and further illustrates that the absolute abundance of MGEs exerts greater impacts on the variation of absolute abundance of ARGs than microbial communities under BACs exposure, suggesting BACs may promote antibiotic resistance by enhancing the horizontal gene transfer of ARGs across sludge microbiomes. Collectively, our results provide new insights into the proliferation of antibiotic resistance through disinfectant usage during the pandemic and highlight the necessity to minimize the environmental release of disinfectants into the non-target environment for combating antibiotic resistance.


Subject(s)
COVID-19 , Disinfectants , Microbiota , Humans , Sewage/microbiology , Benzalkonium Compounds/pharmacology , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/genetics
5.
Environ Res ; 219: 115139, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2165280

ABSTRACT

The disposal of healthcare waste without prior elimination of pathogens and hazardous contaminants has negative effects on the environment and public health. This study aimed to profile the complete microbial community and correlate it with the antibiotic compounds identified in microwave pre-treated healthcare wastes collected from three different waste operators in Peninsular Malaysia. The bacterial and fungal compositions were determined via amplicon sequencing by targeting the full-length 16S rRNA gene and partial 18S with full-length ITS1-ITS2 regions, respectively. The antibiotic compounds were characterized using high-throughput spectrometry. There was significant variation in bacterial and fungal composition in three groups of samples, with alpha- (p-value = 0.04) and beta-diversity (p-values <0.006 and < 0.002), respectively. FC samples were found to acquire more pathogenic microorganisms than FA and FV samples. Paenibacillus and unclassified Bacilli genera were shared among three groups of samples, meanwhile, antibiotic-resistant bacteria Proteus mirabilis, Enterococcus faecium, and Enterococcus faecalis were found in modest quantities. A total of 19 antibiotic compounds were discovered and linked with the microbial abundance detected in the healthcare waste samples. The principal component analysis demonstrated a positive antibiotic-bacteria correlation for genera Pseudomonas, Aerococcus, Comamonas, and Vagococcus, while the other bacteria were negatively linked with antibiotics. Nevertheless, deep bioinformatic analysis confirmed the presence of blaTEM-1 and penP which are associated with the production of class A beta-lactamase and beta-lactam resistance pathways. Microorganisms and contaminants, which serve as putative indicators in healthcare waste treatment evaluation revealed the ineffectiveness of microbial inactivation using the microwave sterilization method. Our findings suggested that the occurrence of clinically relevant microorganisms, antibiotic contaminants, and associated antibiotic resistance genes (ARGs) represent environmental and human health hazards when released into landfills via ARGs transmission.


Subject(s)
COVID-19 , Microbiota , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , beta-Lactams , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Pandemics , COVID-19/genetics , Bacteria/genetics , Drug Resistance, Microbial/genetics
6.
Microb Biotechnol ; 15(9): 2464-2475, 2022 09.
Article in English | MEDLINE | ID: covidwho-2019054

ABSTRACT

Poultry meat production is one of the most important agri-food industries in the world. The selective pressure exerted by widespread prophylactic or therapeutic use of antibiotics in intensive chicken farming favours the development of drug resistance in bacterial populations. Chicken liver, closely connected with the intestinal tract, has been directly involved in food-borne infections and found to be contaminated with pathogenic bacteria, including Campylobacter and Salmonella. In this study, 74 chicken livers, divided into sterile and non-sterile groups, were analysed, not only for microbial indicators but also for the presence of phages and phage particles containing antibiotic resistance genes (ARGs). Both bacteria and phages were detected in liver tissues, including those dissected under sterile conditions. The phages were able to infect Escherichia coli and showed a Siphovirus morphology. The chicken livers contained from 103 to 106 phage particles per g, which carried a range of ARGs (blaTEM , blaCTx-M-1 , sul1, qnrA, armA and tetW) detected by qPCR. The presence of phages in chicken liver, mostly infecting E. coli, was confirmed by metagenomic analysis, although this technique was not sufficiently sensitive to identify ARGs. In addition, ARG-carrying phages were detected in chicken faeces by qPCR in a previous study of the group. Comparison of the viromes of faeces and liver showed a strong coincidence of species, which suggests that the phages found in the liver originate in faeces. These findings suggests that phages, like bacteria, can translocate from the gut to the liver, which may therefore constitute a potential reservoir of antibiotic resistance genes.


Subject(s)
Bacteriophages , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bacteriophages/genetics , Chickens , Drug Resistance, Microbial/genetics , Escherichia coli , Genes, Bacterial , Liver
7.
J Water Health ; 20(8): 1157-1170, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1928362

ABSTRACT

The COVID-19 pandemic has brought new momentum to 'wastewater-based epidemiology' (WBE). This approach can be applied to monitor the levels of antibiotic-resistant genes (ARGs), which in terms are used to make inferences about the burden of antimicrobial resistance (AMR) in human settlements. However, there is still little information about temporal variability in ARG levels measured in wastewater streams and how these influence the inferences made about the occurrence of AMR in communities. The goal of this study was hence to gain insights into the variability in ARG levels measured in the influent and effluent of two wastewater treatment plants in The Netherlands and link these to levels of antibiotic residues measured in the same samples. Eleven antibiotics were detected, together with all selected ARGs, except for VanB. Among the measured antibiotics, significant positive correlations (p > 0.70) with the corresponding resistance genes and some non-corresponding ARGs were found. Mass loads varied up to a factor of 35 between days and in concomitance with rainfall. Adequate sampling schemes need to be designed to ensure that conclusions are drawn from valid and representative data. Additionally, we advocate for the use of mass loads to interpret levels of AMR measured in wastewater.


Subject(s)
COVID-19 , Water Purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans , Pandemics , Waste Disposal, Fluid , Wastewater/chemistry
8.
J Water Health ; 19(6): 895-906, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1606294

ABSTRACT

The continuous introduction of cleaning products containing benzalkonium chloride (BAC) from household discharges can mold the microbial communities in wastewater treatment plants (WWTPs) in a way still poorly understood. In this study, we performed an in vitro exposure of activated sludge from a WWTP in Costa Rica to BAC, quantified the changes in intI1, sul2, and qacE/qacEΔ1 gene profiles, and determined alterations in the bacterial community composition. The analysis of the qPCR data revealed elevated charges of antibiotic resistance genes in the microbial community; after BAC's exposure, a significant increase in the qacE/qacEΔ1 gene, which is related to ammonium quaternary resistance, was observed. The 16S rRNA gene sequences' analysis showed pronounced variations in the structure of the bacterial communities, including reduction of the alpha diversity values and an increase of the relative abundance of Alphaproteobacteria, particularly of Rhodospseudomonas and Rhodobacter. We confirmed that the microbial communities presented high resilience to BAC at the mg/mL concentration, probably due to constant exposure to this pollutant. They also presented antibiotic resistance-related genes with similar mechanisms to tolerate this substance. These mechanisms should be explored more thoroughly, especially in the context of high use of disinfectant.


Subject(s)
Benzalkonium Compounds , Sewage , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Benzalkonium Compounds/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Wastewater
9.
J Hazard Mater ; 425: 127774, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1517334

ABSTRACT

The demand for facial masks remains high. However, little is known about discarded masks as a potential refuge for contaminants and to facilitate enrichment and spread of antibiotic resistance genes (ARG) in the environment. We address this issue by conducting an in-situ time-series experiment to investigate the dynamic changes of ARGs, bacteria and protozoa associated with discarded masks. Masks were incubated in an estuary for 30 days. The relative abundance of ARGs in masks increased after day 7 but levelled off after 14 days. The absolute abundance of ARGs at 30 days was 1.29 × 1012 and 1.07 × 1012 copies for carbon and surgical masks, respectively. According to normalized stochasticity ratio analysis, the assembly of bacterial and protistan communities was determined by stochastic (NST = 62%) and deterministic (NST = 40%) processes respectively. A network analysis highlighted potential interactions between bacteria and protozoa, which was further confirmed by culture-dependent assays, that showed masks shelter and enrich microbial communities. An antibiotic susceptibility test suggested that antibiotic resistant pathogens co-exist within protozoa. This study provides an insight into the spread of ARGs through discarded masks and highlights the importance of managing discarded masks with the potential ecological risk of mask contamination.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans , Masks , Pandemics , SARS-CoV-2
10.
PLoS Pathog ; 17(9): e1009929, 2021 09.
Article in English | MEDLINE | ID: covidwho-1430555

ABSTRACT

Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/genetics , Drug Resistance, Microbial/genetics , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Biological Evolution , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
11.
Int J Mol Sci ; 22(13)2021 Jun 26.
Article in English | MEDLINE | ID: covidwho-1288897

ABSTRACT

Recently, much attention has been paid to the COVID-19 pandemic. Yet bacterial resistance to antibiotics remains a serious and unresolved public health problem that kills hundreds of thousands of people annually, being an insidious and silent pandemic. To contain the spreading of the SARS-CoV-2 virus, populations confined and tightened hygiene measures. We performed this study with computer simulations and by using mobility data of mobile phones from Google in the region of Lisbon, Portugal, comprising 3.7 million people during two different lockdown periods, scenarios of 40 and 60% mobility reduction. In the simulations, we assumed that the network of physical contact between people is that of a small world and computed the antibiotic resistance in human microbiomes after 180 days in the simulation. Our simulations show that reducing human contacts drives a reduction in the diversity of antibiotic resistance genes in human microbiomes. Kruskal-Wallis and Dunn's pairwise tests show very strong evidence (p < 0.000, adjusted using the Bonferroni correction) of a difference between the four confinement regimes. The proportion of variability in the ranked dependent variable accounted for by the confinement variable was η2 = 0.148, indicating a large effect of confinement on the diversity of antibiotic resistance. We have shown that confinement and hygienic measures, in addition to reducing the spread of pathogenic bacteria in a human network, also reduce resistance and the need to use antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/drug effects , Genetic Variation , Algorithms , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , COVID-19/pathology , COVID-19/virology , Databases, Factual , Drug Resistance, Microbial/genetics , Humans , Physical Distancing , Quarantine , SARS-CoV-2/isolation & purification
12.
J Hazard Mater ; 416: 126085, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1243046

ABSTRACT

The usage of triclosan (TCS) may rise rapidly due to the COVID-19 pandemic. TCS usually sinks in the activated sludge. However, the effects of TCS in activated sludge remain largely unknown. The changes in nitrogen cycles and the abundances of antibiotic resistance genes (ARGs) caused by TCS were investigated in this study. The addition of 1000 µg/L TCS significantly inhibited nitrification since the ammonia conversion rate and the abundance of nitrification functional genes decreased by 12.14%. The other nitrogen cycle genes involved in nitrogen fixation and denitrification were also suppressed. The microbial community shifted towards tolerance and degradation of phenols. The addition of 100 µg/L TCS remarkably increased the total abundance of ARGs and mobile genetic elements by 33.1%, and notably, the tetracycline and multidrug resistance genes increased by 54.75% and 103.42%, respectively. The co-occurrence network revealed that Flavobacterium might have played a key role in the spread of ARGs. The abundance of this genus increased 92-fold under the addition of 1000 µg/L TCS, indicating that Flavobacterium is potent in the tolerance and degradation of TCS. This work would help to better understand the effects of TCS in activated sludge and provide comprehensive insight into TCS management during the pandemic era.


Subject(s)
COVID-19 , Triclosan , Anti-Bacterial Agents , Drug Resistance, Microbial/genetics , Humans , Nitrification , Pandemics , SARS-CoV-2 , Sewage
13.
Sci Total Environ ; 788: 147873, 2021 Sep 20.
Article in English | MEDLINE | ID: covidwho-1240610

ABSTRACT

Although river restoration has been increasingly implemented to restore water quality in ecosystems, its effect on the removal of emerging pollutant antibiotics, and their resultant influence on microbial community structure and functions in river water is still unclear. This study investigated the changes of antibiotics, antibiotic resistant genes (ARGs), microbial communities, and their spatial distributions in a megacity river before and after river restoration. Results indicated that although the restoration activities including riverbed dredging, riverbank hardening, sewage and storm water separation and re-pipelining improved water quality such as by decreasing total phosphorus (TP) content from 4.60 ± 6.38 mg/L in 2018 to 0.98 ± 0.44 mg/L in 2020, the antibiotic concentrations in river water increased. Total antibiotic concentrations in the water samples were higher in 2020 (506.89-6952.50 ng/L) than those in 2018 (137.93-1751.51 ng/L), likely caused by increased usage of antibiotics in 2020 for COVID-19 treatment. The spatial distributions of antibiotics were less varied likely as a result of less retardation and fast mixing during antibiotic transport. The result also found that the abundance of Actinobacteria and Proteobacteria, and their correlations with ARGs increased. The spatial distributions of ARGs and microbial communities became less varied in the river water, consistent with the antibiotic variations before and after river restoration. Physicochemical changes such as decreased TP and dissolved organic carbon content may also be a factor. The results indicated that the current river restoration efforts were not effective in removing antibiotics, and implied that further studies are needed to investigate their subsequent transformation and transport, and to assess their risks to the health of ecosystems.


Subject(s)
COVID-19 Drug Treatment , Microbiota , Anti-Bacterial Agents , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans , Rivers , SARS-CoV-2
15.
Sci Total Environ ; 765: 144264, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-989203

ABSTRACT

Quaternary ammonium compounds (QAC, e.g., cetyltrimethylammonium bromide, (CTAB)) are widely used as surfactants and disinfectants. QAC already are commonly found in wastewaters, and their concentration could increase, since QAC are recommended to inactivate the SARS-CoV-2 (COVID-19) virus. Exposure of bacteria to QAC can lead to proliferation of antibiotic resistance genes (ARG). In particular, O2-based membrane biofilm reactors (O2-MBfRs) achieved excellent CTAB biodegradation, but ARG increased in their biofilms. Here, we applied meta-transcriptomic analyses to assess the impacts of CTAB exposure and operating conditions on microbial community's composition and ARG expression in the O2-MBfRs. Two opportunistic pathogens, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, dominated the microbial communities and were associated with the presence of ARG. Operating conditions that imposed stress on the biofilms, i.e., limited supplies of O2 and nitrogen or a high loading of CTAB, led to large increases in ARG expression, particularly for genes conferring antibiotic-target protection. Important within the efflux pumps was the Resistance-Nodulation-Division (RND) family, which may have been active in exporting CTAB from cells. Oxidative stress appeared to be the key factor that triggered ARG proliferation by selecting intrinsically resistant species and accentuating the expression of ARG. Our findings suggest that means to mitigate the spread of ARG, such as shown here in a O2-based membrane biofilm reactor, need to consider the impacts of stressors, including QAC exposure and stressful operating conditions.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Anti-Bacterial Agents/toxicity , Biofilms , Cetrimonium , Drug Resistance, Microbial/genetics , Humans , Microbial Sensitivity Tests , SARS-CoV-2
16.
Sci Rep ; 10(1): 11746, 2020 07 16.
Article in English | MEDLINE | ID: covidwho-654915

ABSTRACT

Category A and B biothreat agents are deemed to be of great concern by the US Centers for Disease Control and Prevention (CDC) and include the bacteria Francisella tularensis, Yersinia pestis, Burkholderia mallei, and Brucella species. Underscored by the impact of the 2020 SARS-CoV-2 outbreak, 2016 Zika pandemic, 2014 Ebola outbreak, 2001 anthrax letter attacks, and 1984 Rajneeshee Salmonella attacks, the threat of future epidemics/pandemics and/or terrorist/criminal use of pathogenic organisms warrants continued exploration and development of both classic and alternative methods of detecting biothreat agents. Volatile organic compounds (VOCs) comprise a large and highly diverse group of carbon-based molecules, generally related by their volatility at ambient temperature. Recently, the diagnostic potential of VOCs has been realized, as correlations between the microbial VOC metabolome and specific bacterial pathogens have been identified. Herein, we describe the use of microbial VOC profiles as fingerprints for the identification of biothreat-relevant microbes, and for differentiating between a kanamycin susceptible and resistant strain. Additionally, we demonstrate microbial VOC profiling using a rapid-throughput VOC metabolomics method we refer to as 'simultaneous multifiber headspace solid-phase microextraction' (simulti-hSPME). Finally, through VOC analysis, we illustrate a rapid non-invasive approach to the diagnosis of BALB/c mice infected with either F. tularensis SCHU S4 or Y. pestis CO92.


Subject(s)
Metabolomics/methods , Tularemia/metabolism , Volatile Organic Compounds/metabolism , Animals , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Disease Outbreaks , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Female , Francisella tularensis/drug effects , Francisella tularensis/isolation & purification , Francisella tularensis/metabolism , Kanamycin/pharmacology , Mice , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Solid Phase Microextraction , Tularemia/microbiology , Tularemia/pathology , Tularemia/veterinary , Volatile Organic Compounds/analysis , Volatile Organic Compounds/isolation & purification , Yersinia pestis/drug effects , Yersinia pestis/isolation & purification , Yersinia pestis/metabolism
17.
EMBO Rep ; 21(6): e50807, 2020 06 04.
Article in English | MEDLINE | ID: covidwho-619614

ABSTRACT

To fight antibiotic resistance, novel drugs are urgently needed. Regulatory agencies are addressing the economic problems and offer new incentives for developing new antibiotics.


Subject(s)
Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial/genetics
18.
Nat Med ; 26(6): 832-841, 2020 06.
Article in English | MEDLINE | ID: covidwho-594839

ABSTRACT

Increasingly, public-health agencies are using pathogen genomic sequence data to support surveillance and epidemiological investigations. As access to whole-genome sequencing has grown, greater amounts of molecular data have helped improve the ability to detect and track outbreaks of diseases such as COVID-19, investigate transmission chains and explore large-scale population dynamics, such as the spread of antibiotic resistance. However, the wide adoption of whole-genome sequencing also poses new challenges for public-health agencies that must adapt to support a new set of expertise, which means that the capacity to perform genomic data assembly and analysis has not expanded as widely as the adoption of sequencing itself. In this Perspective, we make recommendations for developing an accessible, unified informatic ecosystem to support pathogen genomic analysis in public-health agencies across income settings. We hope that the creation of this ecosystem will allow agencies to effectively and efficiently share data, workflows and analyses and thereby increase the reproducibility, accessibility and auditability of pathogen genomic analysis while also supporting agency autonomy.


Subject(s)
Coronavirus Infections/genetics , Genomics , Pneumonia, Viral/genetics , Population Dynamics , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Outbreaks , Drug Resistance, Microbial/genetics , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL